Enhancing Symmetry in GAN Generated
Fashion Images

Vishnu Makkapati' and Arun Patro?*

1 Myntra Designs Pvt. Ltd., Bengaluru - 560068, India
vishnu.makkapati@myntra.com
2 Department of Electrical Engineering,
Indian Institute of Technology, Kharagpur - 721302, India
arun.patro@ee.iitkgp.ernet.in

Abstract. Generative adversarial networks (GANs) are being used in
several fields to produce new images that are similar to those in the
input set. We train a GAN to generate images of articles pertaining
to fashion that have inherent horizontal symmetry in most cases. Vari-
ants of GAN proposed so far do not exploit symmetry and hence may
or may not produce fashion designs that are realistic. We propose two
methods to exploit symmetry, leading to better designs - a) Introduce a
new loss to check if the flipped version of the generated image is equiva-
lently classified by the discriminator b) Invert the flipped version of the
generated image to reconstruct an image with minimal distortions. We
present experimental results to show that imposing the new symmetry
loss produces better looking images and also reduces the training time.

Keywords: Generative Adversarial Networks, Deep Learning, Symme-
try Loss, Generator, Discriminator

1 Introduction

Generative Adversarial Networks (GANs) [3] are generative models that learn
the distribution of the data without any supervision. They can be used to gen-
erate data (images or text) that are similar to the original dataset which look
real enough to be indistinguishable by a human. GANs use adversarial learning
that puts two networks, a Generator network and a Discriminator network in
competition to learn the distribution of the input dataset. A generator tries to
produce data that can fool the discriminator wheres the discriminator tries to
identify them correctly as fake. The convergence of a GAN is highly empirical
and is decided when the generator and discriminator losses are stable and the
decision boundary is equi-probable.

We attempt to train a GAN to generate new fashion designs. The idea here
is to learn the distribution of the input designs and produce new ones that are

* This work was performed when A. Patro was an intern with Myntra Designs Pvt.
Ltd.

inspired by them. Most of the fashion article types such as t-shirts, shirts, jeans
and trousers are symmetric. Hence it is expected that the GAN learns the in-
herent symmetry in the input data used for training. However, we noticed that
DCGAN [6], a widely used implementation of GAN using conv-nets does not
necessarily produce symmetric images. Also we observed that there are distor-
tions in the images generated using it. But the location of the distortions is not
symmetric. We propose some enhancements to DCGAN to get rid of undesirable
artifacts in the synthesized images.

We propose a trick to reduce the distortions in the generated images by
exploiting symmetry. There are some recent attempts to invert the Generator in
GAN [1,2,5]. These methods try to estimate the latent vector used to produce the
generated image such that the reconstructed image is very close to the original.
We reconstruct an image with minimal distortions by estimating the latent vector
from the flipped version of the generated image.

z GEN ' DIS classify asreal GEN , DIS classify as fake

(g_loss_orig) (d_loss_fake)

classify as real
'—> DIS |—> e rom

training input
(catalog)

(a) Generator Losses (b) Discriminator Losses

Fig. 1: Framework of DCGAN

2 Proposed Methods

We exploit the inherent symmetry in fashion designs to train the GAN. To satisfy
the symmetry condition, the horizontally flipped image of the generated image
should look similar to the original. But it’s not necessary that it is exactly same
at a pixel level owing to certain design elements that are typically placed only on
one side of the article (e.g., pocket/crest of a t-shirt). We exploit symmetry in
the images to produce aesthetically better looking designs and reduce distortions
in the generated images. Our contributions are summarized in this section.

2.1 Enhancements to DCGAN to Generate Symmetric Images

We impose a new symmetry loss where the flipped version of a generated image
is discriminated equivalently by the discriminator. We realize it using DCGAN,
a popular implementation of a GAN. Training the traditional DCGAN consists
of minimizing three losses (Fig. 1):

1. d_loss_real: error in identifying input training images as real

2. d_loss_fake: error in identifying GAN generated images as fake
3. g_loss_orig: error in identifying GAN generated images as real

(g_loss_orig) (d_loss_fake)

z—{ GEN —fl—f DI |— e z— GEN —J——] DIs [— s

i—» DIS |—»> classivasreal ‘_, DIS 5 classily as fake

(g_loss_fiip) (d_loss_fake_flip)

% classify as real
a—{os |-

(d_loss_real)

' classify as real
) D IS (d_loss_real_flip)

training input
(catalog)

(a) Generator Losses (b) Discriminator Losses

Fig. 2: Framework of Proposed GAN

We trained a DCGAN and conducted experiments to check if it has learnt
the symmetry of the images in the dataset. We flipped the generated images
horizontally and passed them through the discriminator. If the distribution of
the flipped images was also learnt, then the losses for the generated images and
their flipped versions should be approximately equal. But we noticed that the
losses for the flipped images are significantly higher (Fig. 3a). This proves that
DCGAN has not learnt the inherent symmetry in the fashion designs.

We enhance DCGAN to learn symmetry in the input data by:

1. Augmentation: Training the GAN by augmenting the input images with
their flipped versions.

2. Classification Loss: Introducing a new loss to check if the flipped version
of the GAN generated image is equivalently classified by the discriminator
(Fig. 2).

If the flipped augmented images are also used for training, the DCGAN
should learn the distribution of them as well. But our experiments showed that
it was not able to learn it (Fig. 3b). It can be seen that the generator loss for
the flipped images is quite high though the discriminator learns well. We impose
a symmetry loss and thus our GAN consists of evaluating six losses (Fig. 2):

1. d_loss_real: error in identifying input images as real
2. d_loss_fake: error in identifying GAN generated images as fake
3. g_loss_orig: error in identifying GAN generated images as real

4. d_loss_real_flip: error in identifying flipped input images as real
5. d_loss_fake_flip: error in identifying flipped GAN generated images as fake
6. g_loss_flip: error in identifying flipped GAN generated images as real

wherein the final losses that are minimized are:

1. g-loss_mean = (g-loss_orig + g_loss_flip) /2
2. d_loss_mean = (d_loss_real+ d_loss_fake + d_loss_real_flip + d_loss_fake_flip) /4

i ARIAREA iy 7 8.loss flip ARG VAAASYR A pafen T 055D

— - g_loss_mean 275 —- g_loss_mean
---- g_loss_orig .-~ g_loss_orig
« d_loss_flip 2500 o dloss_flip
+ d_loss_orig + d_loss_orig

25- + d_loss_orig 2.25- + d_loss_orig
PP S L L AT I A AN N A CANNAL TP SN A g

3.0 -

20~

P e e S aat P et S O S AP

10- PR R P P 1.00 -
: R i A e
° 2 a0 60 a0 100 0 2 a0 60 a0 100
(a) DCGAN (b) DCGAN with augmented images

15-

14-

—— g_loss_flip

13-
—- g_loss_mean

-+ g_loss_orig
< d loss flip
+ d_loss_orig
11- + d_loss_orig

12-

1.0 -

(c) Proposed GAN

Fig. 3: Mean losses per epoch

We aid the discriminator by running the flipped images through it. Since the
losses for the flipped images are used to train the discriminator, it will become
better at identifying both the generated image and it’s flipped version as fake.
It can be found from Fig. 3c that the losses for the flipped images are just
marginally higher than that for the original generated images. This proves that
the generator trained using our method is able to produce images that are near
symmetric.

2.2 Minimize the Distortions in Generated Images

When we visually observed the images produced by the generator, we found that
they suffered from distortions (Fig. 4a). But the location of these distortions is

asymmetric. We present a trick using symmetry to minimize them. We flip the
generated images (Fig. 4b) and estimate the latent vector from which they are
generated [1,5]. We run the estimated latent vector through the generator and
reconstruct them (Fig. 4c).

(a) Original (b) Flipped (c) Reconstructed

Fig. 4: Reconstruction of Flipped Images from GAN

We know that nearby latent vectors have close representations in the image
space. Using this property, we try to reconstruct the generated images (X). An
L2 loss between the generated image and its reconstructed version is minimized
by using a regularizer on the magnitude of latent vector z [1].

Lrecon = ||G(2) — X||* + 2|2 (1)

We can notice from Fig. 4c that the distortions present in Fig. 4b are min-
imized. One possible explanation for this result is that the location of the dis-
tortion in the flipped image is different (flipped) from that produced by the
generator. The generator, in general, does not produce the distortion at the
same location as that in the flipped image. Hence in the process of estimating
the latent vector and reconstructing the flipped image from it, the distortions
are reduced.

For example the images in (Row 2, Column 3) and (Row 4, Column 1) have
hands occluding the t-shirt (Fig. 4b). The corresponding images in Fig. 4¢ do not
suffer from these artifacts. This is also true for the other asymmetric distortions
in the rest of the images.

3 Performance Evaluation

We evaluate the performance of the methods presented by training DCGAN and
our proposed variant on t-shirt images from our catalog. The dataset comprised
of 45,000 solid t-shirts with varying attributes (e.g., collar type, color, and sleeve
length). We train GAN to generate images of resolution 64x64 pixels using a
modified version of [4]. We quantitatively assess the two methods by comparing
the losses (Fig. 3). We can notice from Fig. 5 that images generated using our
method are near symmetric and do not suffer much from distortions.

Fig. 5: Samples from Proposed GAN at Epoch 100

4 Conclusion

We introduce a symmetry loss to train GAN to produce better looking images.
We evaluated the performance of the scheme and demonstrated that the pro-
posed method converges faster. We also present a trick to reduce the distortions
in the generated images by inverting the flipped versions of them. The visual
results show that the reconstructed images do not suffer from artifacts that are
generally produced by GAN.

References

1. Bora, A., Jalal, A., Price, E., Dimakis, A.G.: Compressed sensing using generative
models. arXiv preprint arXiv:1703.03208 (2017)

2. Creswell, A., Bharath, A.A.: Inverting the generator of a generative adversarial
network. arXiv preprint arXiv:1611.05644 (2016)

3. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural infor-
mation processing systems. pp. 2672-2680 (2014)

4. Kim, T.: A tensorflow implementation of deep convolutional generative adversarial
networks, https://github.com/carpedm20/DCGAN-tensorflow

5. Lipton, Z.C., Tripathi, S.: Precise recovery of latent vectors from generative adver-
sarial networks. arXiv preprint arXiv:1702.04782 (2017)

6. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015)

