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Introduction
Blur

Blur is a distortion / degradation of
images which results in unclear images
that have lost features.

They can be classified into

a. Defocus (optical)
b.  Motion

Motion Blur due to moving object
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Introduction
Blur

Blur is a distortion / degradation of
images which results in unclear images
that have lost features.

They can be classified into

a. Defocus (optical)
b.  Motion

Defocus Blur due to incorrect focus in 3-D




Introduction

Uniform vs. Non-uniform Blur

Uniform Non-uniform
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Uniform vs. Non-uniform Blur

Uniform Non-uniform
(length = 10, angle = 45)




Introduction

Image Deblurring

1. Itis very challenging for a computer to do
unsupervised Deblurring.

2. Blind Deconvolution techniques are

severely under constrained as we need G(X,y) — h(X,Y)*F(X;Y) + n(X,y)

need estimate h and F given G.

3. Blind Deconvolution works by first
estimating the h also known as Point
Spread function and then inverting using
convolution or conjugate gradient
methods.



Blur Kernel Estimation using Deep Learning

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected



Aim and Approach

AIM:
Estimating the non uniform blur kernel at each pixel using Convolutional Neural Networks
(CNNSs). Generating the sigma-map for a variantly blurred image.

APPROACH:
We train the CNNs to learn the sigma value of different gaussian blur kernels that model
defocus blur. We start with training the CNN for 32x32 size patches and gradually reduce the
patch size down to 1 pixel.



Dataset

1.

We used images from the
Brodatz Textured Dataset

Each Image was blurred with
a gaussian blur kernel with
sigma from [0.3,0.6, ... ,3.0]
taking any of the 10 discrete
values.

32x32 size non-overlapping
patches were sampled from
these images to form the
dataset.
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taking any of the 10 discrete
values.

32x32 size non-overlapping
patches were sampled from
these images to form the
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Network Architecture

h> model
n.Sequential {
[input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> (12) -> (13) -> (14) -> (15) -> (16) -> (17) -> (18)
-> (19) -> (20) -> (21) -> (22) -> (23) -> (24) -> (25) -> (26) -> output]
(1): cudnn.SpatialConvolution(1l -> 4, 3x3)
(2): cudnn.RelLU
(3): cudnn.SpatialConvolution(4 -> 8, 3x3)
(4): cudnn.RelU
(5): cudnn.SpatialConvolution(8 -= 16, 3x3)
(6): cudnn.RelU
(7): cudnn.SpatialConvolution(16 -> 32, 3x3)
(8): cudnn.RelLU
(9): cudnn.SpatialcConvolution(32 -> 64, 3x3)
(10): cudnn.RelU
(11): cudnn.SpatialcConvolution(64 -> 64, 3x3)
(12): cudnn.RelLU
(13): cudnn.SpatialConvolution(64 -=> 64, 5x5)
(14): cudnn.RelLU
(15): cudnn.SpatialMaxPooling(2x2, 2,2)
(16): cudnn.SpatialConvolution(64 -> 64, 5x5)
(17): cudnn.RelLU
(18): nn.View(1024)
(19): nn.Linear(1024 -> 1600)
(20): nn.RelLU
(21): nn.Linear(1600 -> 800)
(22): nn.ReLU
(23): nn.Linear(860 -> 100)
(24): nn.RelLU
(25): nn.Linear(168 -> 308)
(26): nn.LogSoftMax
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Textured Images Ramp Blur RMSE: 0.2350
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Textured Images Ramp Blur RMSE: 0.1645
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Textured Images Ramp Blur RMSE: 0.000116
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Accuracy

Classes Sigma Step Size MSE RMSE

10 0.3 0.0552 0.2350

30 0.1 0.0270 0.1645
1.3506e-08 1.1621e-04




Textured Images Sin Blur
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Textured Images Sin Blur RMSE: 0.1991
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Textured Images Sin Blur RMSE: 0.1331
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Difference
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Accuracy

Smoothing iterations MSE RMSE
0 0.0397 0.1991
1 0.0357 0.1891
12000 0.0177 0.1331
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Text Images 2-D Sin Blur




Natural images with defocused background
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Natural images with defocused background
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Natural images with defocused foreground




Conclusion

1. We see that the model is able to learn 30 classes and gives a coarse
prediction of the sigma map.

2. We can getter better results if we reduce the quantization level to 60
classes.

3. Ideally, Blur Kernel Estimation is a regression problem. In the future we
hope to use Fully Convolutional Networks.
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